Ab Initio Molecular Orbital Calculations on Silaethylene, $H_2Si=CH_2$. The Theoretical Infrared Spectrum

By H. BERNHARD SCHLEGEL and SAUL WOLFE* (Department of Chemistry, Queen's University, Kingston, Ontario, Canada)

and KURT MISLOW*

(Department of Chemistry, Princeton University, Princeton, New Jersey 08540)

Summary The i.r. spectra of silaethylene $(H_2Si=CH_2)$ and $[2,2,-^2H_2]$ -silaethylene $(H_2Si=CD_2)$ are predicted by theoretical calculations.

RECENT reports have indicated that species containing a carbon-silicon double bond may exist as unstable reaction intermediates.¹⁻⁶ The carbon-silicon double bond appears

to be strongly polarized $(Si-C)^4$ and has a π -bond energy about half that of the carbon-carbon double bond.⁶ In addition, the 1,1-dimethyl-1-silaethylene obtained in the pyrolysis of 1,1-dimethyl-1-silacyclobutane probably exists as a closed shell (singlet) species and not as a biradical (triplet).^{1,4a} Semi-empirical molecular orbital computations are consistent with these findings.⁶

In a low-temperature trapping experiment of the pyrolysis products of 1,1-dimethyl-1-silacyclobutane, Barton and McIntosh³ observed an unstable substance which possesses a sharp band at 1407 cm⁻¹ in the i.r. spectrum and which they tentatively assigned to the species $Me_2Si=CH_2$. We now report a theoretical i.r. spectrum of the parent compound $H_2Si=CH_2$, silaethylene.

TABLE 1. In-plane vibration frequencies for silaethylene⁸

	Description	H ₂ Si=CH ₂ unadjusted	H ₂ Si=CH ₂ adjusted	$H_2Si = CD_2$ adjusted
1.	asym CH(CD)str	3160	3160 (9)	2341 (1)
2.	sym CH(CD)str	3096	3096 (18)	2260 (13)
3.	asym SiH str	2483	2483 (80)	2484 (80)
4.	sym SiH str	2479	2479 (46)	2480 (46)
5.	CH, bend, Si=C str	1590	1490 (19)	1238 (23)
в.	Si=C str, SiH, bend,		. ,	. ,
	CH, bend	1151	1140 (14)	954 (11)
7.	SiH, bend	1061	993 (5 5)	1002 (50)
8.	CH,rock, SiH,rock	969	777 (68)	700 (65)
9.	SiH, rock, CH, rock	556	317 (10)	266 (5)

 $^{\rm 6}$ Frequencies in cm $^{-1}$. Estimated (ref. 12) % absorption given in parentheses. (Strongest band adjusted to 80% absorption).

† Details will be presented in the full paper.

Wavefunctions were generated on an IBM 360/91 computer with the Gaussian 70 programme system.7 Force constants were computed by the 'force' method,^{8a} using a programme written in our laboratory.^{8b} For a preliminary survey of the conformational hypersurface of the molecule, an STO-3G basis set with standard scale factors was used. More detailed calculations were then performed at the extended basis set level. The scale factors for the H and C valence shells were taken as those optimized for ethylene.⁹ The silicon basis set was constructed from an STO-4G basis set with the contraction scheme altered to conform with the 4,4,3-1G extended basis sets for third period atoms. Standard scale factors were used for the silicon core shells, while the scale factors for the valence shells were optimized in silaethylene ($\zeta_{inner} = \zeta_{outer} = 1.952$, constrained to be equal).

The examination of the energy surface at the STO-3G level indicated that the molecule was planar, with a partial positive charge on silicon and a partial negative charge on carbon, in agreement with Sommer et al.,4 and the semiempirical MO calculations.⁶ Forces and force constants obtained with this minimal basis set were used to relax the geometry⁸ to obtain a starting point for more detailed calculations. Geometry relaxation at the extended basis set level yielded the optimized structure of silaethylene (C_{3v} symmetry, Si=C 1.693 Å, Si-H 1.479 Å, C-H 1.074 Å, < H-Si-C 122.9°, < H-C-Si 122.7°; dipole moment 1.1 D, indicative of a highly polarized Si=C bond). Force constant calculations, using the same extended basis set, for ethylene and silane[†] agree well with other theoretical¹⁰ and experimental¹¹ work. As noticed by Pulay,¹⁰ bending force constants are systematically overestimated by 20%. However, with the basis set used in the present work stretching force constants are underestimated by $ca. 5\%^{\dagger}$ in contrast to other basis sets¹⁰ which overestimate stretching force constants by 10%. Table 1 contains the freTABLE 2. L-Matrix elements for the in-plane vibrations of silaethylene.

				п	п				
	*C-SI	″si−H	r _{si-H} '	≠ 0-H	*с _н'	<c-si-h< th=""><th><c-si-h'< th=""><th><si-c-h< th=""><th><si_c_h< th=""></si_c_h<></th></si-c-h<></th></c-si-h'<></th></c-si-h<>	<c-si-h'< th=""><th><si-c-h< th=""><th><si_c_h< th=""></si_c_h<></th></si-c-h<></th></c-si-h'<>	<si-c-h< th=""><th><si_c_h< th=""></si_c_h<></th></si-c-h<>	<si_c_h< th=""></si_c_h<>
1.	0.000000	-0.010491	0.010491	-0.744114	0.744114	-0.052253	0.052253	0.080878	-0.080878
2.	0.071652	0.006809	0.006809	0.721492	0.721492	0.003264	0.003264	0.038538	0.038538
3.	-0.000000	0.721819	-0.721819	-0.010510	0.010510	-0.031856	0.031856	0.018153	-0.018153
4.	0·029918	0.711531	0.711531	-0.006847	-0.006847	0.006748	0.006748	0.009294	0.009294
б.	0.147543	0.010236	0.010236	-0.007139	-0.007139	-0.025931	-0.025931	-0.678972	-0.678972
6.	0.298996	0.000853	0.000853	0.022796	0.022796	-0.128709	-0.128709	0.128869	0.128869
7.	0.043365	0.014350	0·014350	0·00088 9	0.000889	0.494752	0.494752	-0.002443	-0.002443
8.	-0·000000	0.013954	-0.013954	-0.019968	0.019968	-0.419482	0.419482	0.576784	-0.576784
9.	-0.000000	-0.004309	0.004309	-0.013620	0.013620	0.369031	-0.369031	0.455222	-0.455222

quencies of the in-plane vibration modes calculated with the extended basis set force constants. The second column of Table 1 is obtained by reducing the diagonal bending force constants by 20%, as suggested in ref. 10. These adjusted frequencies are expected to be within 5-10% of the true values and their intensities have been estimated according to ref. 12. The associated normal co-ordinates are given in Table 2. The third entry of Table 1 lists the predicted spectrum for the C deuteriated analogue, assuming that the force constants are essentially unchanged.

is attributed to the partial positive charge on silicon. The 1407 cm⁻¹ band observed by Barton and McIntosh for Me₂Si=CH₂ most likely corresponds to the 1490 cm⁻¹ band calculated for silaethylene. If this assignment is correct, a lowering of ca. 250 cm⁻¹ would be expected for Me₂Si=CD₂.

The work at Princeton was supported by the National Science Foundation. The work at Queen's University was supported by the National Research Council of Canada whom H.B.S. also thanks for a 1967 Science Scholarship.

A relatively high frequency Si-H stretch is found. This

(Received, 18th December 1974; Com. 1539.)

¹ M. C. Flowers and L. E. Gusel'nikov, J. Chem. Soc. B, 1968, 419; L. E. Gusel'nikov, N. S. Nametkin, and V. M. Vdovin, Accounts Chem. Res., 1975, 8, 18, and references therein.

Chem. Res., 1975, 8, 18, and references therein.
² C. J. Attridge, Organometallic Chem. Rev. A., 1970, 5, 323; N. S. Nametkin, L. E. Gusel'nikov, É. A. Volnina, E. N. Burdasov, and V. M. Vdovin, Dokl. Akad. Nauk S.S.R., 1974, 214, 818; R. D. Bush C. M. Golino G. D. Homer, and L. H. Sommer, J. Organometallic Chem., 1974, 80, 37; A. W. P. Jarvie and R. J. Rowley, ibid., 1972, 36, C7; S. P. Hopper and J. S. Fine, ibid., 1974, 80, C21; T. J. Barton and J. A. Kilgour, J. Amer. Chem. Soc., 1974, 96, 2278; Y. Nakadaira, S. Kanouchi, and H. Sakurai, ibid., 1974, 96, 5621; J. Slutsky and H. Kwart, J. Org. Chem., 1973, 38, 3658; and references therein.
³ T. J. Barton and C. L. McIntosh, J.C.S. Chem. Comm., 1972, 861.
⁴ (a) R. D. Bush, C. M. Golino, and L. H. Sommer, J. Amer. Chem. Soc., 1974, 96, 7105; (b) R. D. Bush, C. M. Golino, D. N. Roark, and L. H. Sommer, J. Organometallic Chem., 1973, 38, 245

⁵ R. Walsh, J. Organometallic Chem., 1972, 38, 245.
⁶ D. Curtis, J. Organometallic Chem., 1973, 60, 63; R. Damrauer and D. R. Williams, *ibid.*, 1974, 66, 241.
⁷ W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople, Quantum Chemistry Program Exchange, Indiana ⁹ (a) P. Pulay, Mol. Phys., 1969, 17, 197; (b) H. B. Schlegel and S. Wolfe, to be published.
⁹ (a) P. Pulay, Mol. Phys., 1969, 17, 197; (b) H. B. Schlegel and S. Wolfe, to be published.
⁹ R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 1971, 54, 724.
¹⁰ P. Pulay and W. Meyer, Mol. Phys., 1974, 27, 473.
¹¹ J. D. Dernerd, J. M. M. M. Schwart, Vol. 4, 20, 2020, W. H. Fleichenerd, W. T.

¹¹ J. L. Duncan and I. M. Mills, Spectrochimica Acta, 1964, 20, 523; W. H. Fletcher and W. T. Thompson, J. Mol. Spec., 1968, 25, 240. ¹⁴ E. B. Wilson, J. C. Decius, and P. C. Cross, 'Molecular Vibrations,' McGraw-Hill, New York, 1955.